tooljar

    Complex Number Calculator

    Perform operations on complex numbers with step-by-step solutions and visualizations

    Quick examples:

    z1 (First Number)

    z1 = 3 + 4i = 5.0000 * cis(53.13°)

    z2 (Second Number)

    z2 = 1 + 2i = 2.2361 * cis(63.43°)

    Result

    Rectangular Form
    -5 + 10i
    11.1803
    Magnitude (r)
    116.57°
    Argument (θ)

    Calculation Steps

    (3 + 4i) * (1 + 2i)

    = (3*1 - 4*2) + (3*2 + 4*1)i

    = -5 + 10i

    Complex Plane

    z1 z2 Result

    z1 Properties

    Magnitude (r):5.0000
    Argument (θ):53.13°
    Conjugate:3 - 4i
    |z1|²:25.0000

    About Complex Numbers

    Complex numbers extend the real number system by introducing the imaginary unit i, where i² = -1. They are essential in mathematics, physics, and engineering for representing quantities with both magnitude and direction.

    Key Formulas

    • Rectangular: z = a + bi
    • Polar: z = r(cos(θ) + i*sin(θ)) = r*cis(θ)
    • r = √(a² + b²), θ = atan2(b, a)
    • Multiplication: r1*r2 * cis(θ1 + θ2)
    • Division: (r1/r2) * cis(θ1 - θ2)
    • De Moivre: z^n = r^n * cis(n*θ)
    • Roots: z^(1/n) = r^(1/n) * cis((θ + 2πk)/n)

    Key Concepts

    • De Moivre's theorem simplifies powers and roots using polar form
    • The n-th roots of any complex number are equally spaced on a circle
    • Multiplication rotates and scales; division rotates backward and scales inversely